skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heinselman, Pamela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this challenge, a power transformation function is applied to the WRF Model’s hydrometeor and water vapor mixing ratio variables in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observations using power-transformed hydrometeor and water vapor mixing ratios (qυ) as control variables. Both qualitative and quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation of pseudo–water vapor with power-transformedqυas an additional control variable is found to improve the performance of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for the two experiments that use the power transformation is faster than that of the control experiments. Significance StatementThe effective use of radar reflectivity observations in any data assimilation scheme remains an important research topic because reflectivity observations explicitly include information about hydrometeors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of predictions of high-impact weather events. 
    more » « less